
PyMimircache Documentation
Release 0.0.2.103

Juncheng Yang

Nov 25, 2019

Contents

1 The User Guide 3
1.1 Introduction . 3
1.2 Installation . 4
1.3 Quick Start . 6
1.4 Open Different Traces . 9
1.5 Get Profiler/Do Profiling . 10
1.6 Basic Plotting . 13
1.7 Heatmap Plotting . 16
1.8 Advanced Usages . 20
1.9 API . 24

2 Supported Features 43

3 Customization 45

4 Indices and tables 47

Python Module Index 49

Index 51

i

ii

PyMimircache Documentation, Release 0.0.2.103

Release v0.0.2.103.

Welcome to the documentation of PyMimircache, a Python3 cache analysis platform. The target users of PyMimir-
cache are researchers and system administrators. The goal behind PyMimircache is to provide a platform that

• allows researchers to study and design cache replacement algorithms easily and efficiently.

• allows system administrators to analyze and visualize their cache performance easily and efficiently.

The power of PyMimircache:

An example of hit ratio curve plot and hit ratio heatmap.

>>> from PyMimircache import Cachecow
>>> c = Cachecow()
>>> c.vscsi("trace.vscsi") # this file is in the data folder on GitHub, other
→˓data types also supported
>>> print(c.stat())
>>> print(c.get_reuse_distance())
[-1 -1 -1 -1 -1 -1 11 7 11 8 8 8 -1 8]

>>> print(c.get_hit_ratio_dict("LRU", cache_size=20))
{0: 0.0, 1: 0.025256428270338627, 2: 0.031684698608964453, ... 20: 0.
→˓07794716875087819}

>>> c.plotHRCs(["LRU", "LFU", "Optimal"])

Contents 1

PyMimircache Documentation, Release 0.0.2.103

>>> c.heatmap('r', "hit_ratio_start_time_end_time", time_interval=10000000)

2 Contents

CHAPTER 1

The User Guide

1.1 Introduction

The study of cache has a long history; however, there is no single open-source platform for easy and efficient analysis
of cache traces. That’s why we are building PyMimircache, a Python3 platform for analyzing cache traces. Note that
PyMimircache only works on Python3, not Python2.

The target users of PyMimircache are researchers and system administrators. The goal behind PyMimircache is to
provide a platform that

• allows researchers to study and design cache easily and efficiently.

• allows system administrators to analyze and visualize their cache performance easily and efficiently.

The KEY philosophy is that we would like to design a cache analysis platform that is efficient, flexible and easy to
use. With these in mind, we designed PyMimircache in Python3 for easy usage, and we implemented state-of-the-
art algorithms in C as the backend for efficiency. However, PyMimircache can also be used without the C backend.
In other words, PyMimircache depends on CMimircache (backend), but you can use either of them independently.
Besides, PyMimircache allows the user to plug in an external reader for reading special data and allows the user to
write their own cache replacement algorithm easily.

1.1.1 Evaluate and Design Algorithm

PyMimircache supports comparison of different cache replacement algorithms, including Least Recent Used
(LRU), Least Frequent Used (LFU), Most Recent Used (MRU), First In First Out (FIFO), Clock, Random, Seg-
mented Least Recent Used (SLRU), Optimal, Adaptive Replacement Cache (ARC). We are actively adding more
cache replacement algorithms. For an extensive list of supported cache replacement algorithms, see here.

Best of all is that you can easily and quickly implement your own cache replacement algorithm.

For all cache replacement algorithms, including the ones built-in and the ones you implement yourself, PyMimircache
supports all kinds of comparison, there is nothing you can’t do, there is only things that you can’t imagine.

To help you better evaluate different cache replacement algorithms, we also include a variety of visualization tools
inside PyMimircache. For example, you can plot the hit ratio curve (HRC), the miss ratio curve (MRC), different

3

PyMimircache Documentation, Release 0.0.2.103

variants of heatmaps and differential heatmaps. For LRU, it also supports efficient reuse distance calculation, reuse
distance distribution plotting, etc.

1.1.2 Visualize and Analyze Workload

Another great usage of PyMimircache is understanding workloads so that you can be the tailor of your cache, design
better strategy to cache your data or know why your cache has certain behavior and how your cache behaves with
time.

In this part, we have figures that show you the hit ratio over time, request rate over time, object popularity distribution,
reuse distance distribution, and different types of heatmaps. These show the opportunity of getting better cache
performance.

1.1.3 Performance, Flexibility and Easy-to-Use

Three features provided by PyMimircache are high performance, flexibility, and easy usage.

• Performance: PyMimircache uses CMimircache with state-of-the-art algorithm as backend for best perfor-
mance.

• Flexibility: PyMimircache can also be used without CMimircache, thus using all Python-based modules. How-
ever,

both usages have the same interface, so no need to learn different tools. Besides, PyMimircache supports three types
of readers: PlainReader for reading plain text data, CsvReader for reading csv data, and BinaryReader for reading
arbitrary binary data. We also supports VscsiReader for reading vscsi data, which is a special type of binary data. If
your data is in a special format, don’t worry! You can easily implement your own reader within a few lines, and you
are good to go! - Easy Usage: We provide Cachecow as the top-level interface, which provides most of the common
usages. Alternatively, you can easily plug in a new algorithm to see whether it can provide better performance than
existing algorithms.

1.1.4 Work in Progress

• More algorithms.

• Connection with Memcached and Redis.

• Windows support.

• GPU support.

1.2 Installation

This part of the documentation covers the installation of PyMimircache. PyMimircache currently has the following
dependencies:

pkg-config , glib , scipy , numpy , matplotlib,

PyMimircache has been tested on Python3.4, Python3.5, Python3.6. Mac Users: if you don’t know how to install
these packages, try macports or homebrew; google will help you.

1.2.1 General Installation (pip)

Using pip3 is the preferred way for installing PyMimiracache, notice that PyMimircache does not support python2.

4 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

First Step: Install C Library

First: use any package management software to install pkg-config and glib.

Second Step: Install Python Dependencies

Use pip3 to install python dependencies:

$ sudo pip3 install matplotlib heapdict

Third Step: pip Install PyMimircache

To install PyMimircache, simply run this command in your terminal of choice:

$ sudo pip3 install PyMimircache

1.2.2 Install From Source

This is an alternative method, only use this one when you can’t install using the methods above, or you want to try the
newest feature of PyMimircache. Beware that it might have bugs in the newest version. We highly recommend that
you to use the stable version from pip3.

Install All Dependencies

Installing all dependencies is the same as in General Installation .

Get the Source Code

PyMimircache is actively developed on GitHub, where the code is always available here.

You can clone the public repository:

$ git clone -b master --recurse-submodules git://github.com/1a1a11a/PyMimircache.git

Once you have a copy of the source, you can install it into your site-packages easily:

$ sudo python3 setup.py install

1.2.3 Install Using Docker Container

As an alternative, you can use PyMimircache in a docker container,

Use interactive shell

To enter an interactive shell and do plotting, you can run:

sudo docker run -it --rm -v $(pwd):/PyMimircache/scripts -v PATH/TO/DATA:/
→˓PyMimircache/data 1a1a11a/PyMimircache /bin/bash

1.2. Installation 5

https://github.com/1a1a11a/PyMimircache/tree/master

PyMimircache Documentation, Release 0.0.2.103

After you run this command, you will be in a shell with everything ready, your current directory is mapped to /PyMimir-
cache/scripts/ and your data directory is mapped to /PyMimircache/data. In addition, we have prepared a test dataset
for you at /PyMimircache/testData.

Run scripts directly

If you don’t want to use an interactive shell and you have your script ready, then you can do:

docker run --rm -v $(pwd):/PyMimircache/scripts -v PATH/TO/DATA:/PyMimircache/data
→˓1a1a11a/PyMimircache python3 /PyMimircache/scripts/YOUR_PYTHON_SCRIPT.py

However, if you are new here or you have trouble using docker to run scripts directly, we suggest using an interactive
shell which can help you debug.

1.2.4 Special Instructions for Installing on Ubuntu

First Step: Install Python3, pip and all dependencies

** If you are using Ubuntu 12**, you need to do the first step. Since Ubuntu 12 does not come with Python3 or above
and some related components like pip, you can either compile Python3 from source or add the repository from Ubuntu
14 into your source list. Below are the instructions for using Ubuntu 14 repository to install Python3 and pip.

Add the following two lines to the top of /etc/apt/source.list

deb http://us.archive.ubuntu.com/ubuntu/ trusty main restricted universe multiverse
deb-src http://us.archive.ubuntu.com/ubuntu/ trusty main restricted universe
→˓multiverse

Then update your repository by:

$ sudo apt-get update

If you are using Ubuntu 14 and above, start here, Ubuntu 12 continues here:

Now install python3, python3-pip and all dependencies:

$ sudo apt-get install python3 python3-pip python3-matplotlib pkg-config libglib2.0-
→˓dev

Second Step: Install PyMimircache

$ sudo pip3 install PyMimircache

Congratulations! You have finished installation, welcome to the world of PyMimircache

1.3 Quick Start

1.3.1 Get Prepared

With PyMimircache, testing/profiling cache replacement algorithms is very easy. Let’s begin by getting a cachecow
object from PyMimircache:

6 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

>>> from PyMimircache import Cachecow
>>> c = Cachecow()

1.3.2 Open Trace File

Now let’s open a trace file. You have three choices for opening different types of trace files. Choose the one that suits
your needs.

>>> c.open("trace/file/location")
>>> c.csv("trace/file/location", init_params={'label':x}) # specify which column
→˓contains the request key(label)
>>> c.vscsi("trace/file/location") # for vscsi format data
>>> c.binary("trace/file/location", init_params={"label": x, "fmt": xxx}) # use
→˓same format as python struct

see here for details.

1.3.3 Get Basic Statistics

You can get some statistics about the trace, for example how many request, how may unique requests.

Functions Parameters Description
num_of_req None return the number of requests in the trace
num_of_uniq_req None return the number of unique requests in the trace
stat None get a list of statistical information about the trace
characterize type (short/medium/long/all) plot a series of fig, type indicates run time
len None return the number of requests in the trace

If you want to read your data from cachecow, you can simply use cachecow as an iterator, for example, doing the
following:

>>> for request in c:
>>> print(c)

1.3.4 Profiler and Profiling

Now cachecow supports basic profiling, to conduct complex profiling, you still need to get a profiler. With a profiler,
you can obtain the reuse distance of a request, the hit count and hit ratio of at a certain size, you can even directly plot
the hit ratio curve (HRC). See here for details.

cachecow supports two type of profiling right now, calculate reuse distance and calculate hit ratio. The syntax is listed
below.

>>> # get an array of reuse distance
>>> c.get_reuse_distance()
>>> # get a dictionary of cache size -> hit ratio
>>> c.get_hit_ratio_dict(algorithm, cache_size=-1, cache_params=None, bin_size=-1)

See API-cachecow section for details.

1.3. Quick Start 7

PyMimircache Documentation, Release 0.0.2.103

1.3.5 Two Dimensional Plotting

cachecow supports the following two dimensional figures,

plot type required parameters Description
cold_miss_count time_mode, time_interval cold miss count VS time
cold_miss_ratio time_mode, time_interval coid miss ratio VS time
request_rate time_mode, time_interval num of requests VS time
popularity NA Percentage of obj VS frequency
rd_popularity NA Num of req VS reuse distance
rt_popularity NA Num of req VS reuse time
mapping NA mapping from original objID to sequential number
interval_hit_ratio cache_size hit ratio of interval VS time

The basic syntax for plotting the two dimensional figures is here

>>> # see table for plot_type names
>>> c.twoDPlot(plot_type, **kwargs)

See API-twoDPlots section and basic plotting for details.

1.3.6 Hit Ratio Curve Plotting

cachecow supports plotting against a list of cache replacement algorithms, using the following syntax:

>>> plotHRCs(algorithm_list, cache_params=(), cache_size=-1, bin_size=-1, auto_
→˓resize=True, figname="HRC.png", **kwargs)

See API-LRUProfiler and API-cGeneralProfiler section and basic plotting for details.

1.3.7 Heatmap Plotting

cachecow supports basic heatmap plotting, and supported plot type is listed below.

>>> # plot heatmaps
>>> heatmap(time_mode, plot_type, time_interval=-1, num_of_pixels=-1, algorithm="LRU",
→˓ cache_params=None, cache_size=-1, **kwargs)
>>> # plot differential heatmaps
>>> diff_heatmap(time_mode, plot_type, algorithm1, time_interval=-1, num_of_pixels=-1,
→˓ algorithm2="Optimal", cache_params1=None, cache_params2=None, cache_size=-1,
→˓**kwargs)

8 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

plot type Description

• hit_ratio_start_time_end_time
Hit ratio heatmap of given start time and end time

• hit_ratio_start_time_cache_size (python only)
Hit ratio heatmap of given start time and cache size

• avg_rd_start_time_end_time (python only)
Average reuse distance of start time and end time

• cold_miss_count_start_time_end_time (python
only)

deprecated

• rd_distribution
Heatmap of reuse distance distribution over time

• rd_distribution_CDF
Heatmap (CDF) of reuse distance distribution over time

• future_rd_distribution
Heatmap of future reuse distribution over time

• dist_distribution
Heatmap of distance distribution over time

• reuse_time_distribution
Heatmap of reuse time distribution over time

Heatmap plotting section describes how to use PyMimircache to plot heatmaps. See API-cHeatmap section and here
for details.

Congratulations! You have finished the basic tutorial! Check Advanced Usage part if you need.

1.4 Open Different Traces

1.4.1 Supported Trace File Type

• plain Text

• csv file

• binary file

• vscsi trace

1.4.2 How to Open a Trace File

Now let’s open a trace file. You have three choices for opening different types of trace files. Choose the one that suits
your needs.

>>> import PyMimircache as m
>>> c = m.cachecow()
>>> c.open("path/to/trace")

(continues on next page)

1.4. Open Different Traces 9

PyMimircache Documentation, Release 0.0.2.103

(continued from previous page)

>>> c.csv("path/to/trace", init_params={'label':x}) # specify which column contains
→˓the request key(label)
>>> c.binary("path/to/trace", init_params={"label": x, "fmt": xxx}) # use same
→˓format as python struct
>>> c.vscsi("path/to/trace") # for vscsi format data

Note: for csv and binary data, the column/field number begins from 1, so the first column(field) is 1, the second is 2,
etc. In the init_params, other possible parameters are listed in the table below

Keyword Argu-
ment

relavant file
type

Possible
Value

Default
Value

Description

label csv/binary int this is
required

the column of label of the request

fmt binary string this is
required

fmt string of binary data, same as python
struct

header csv True/False False whether csv data has header
delimiter csv char “,” the delimiter separating fields in the csv

file
real_time csv/binary int NA the column of real time
op csv/binary int NA the column of operation (read/write)
size csv/binary int NA the column of block/request size

OK, data is ready, now let’s play!

If you want to read your data from cachecow, you can simply use cachecow as an iterator. For example, do the
following:

>>> for request in c:
>>> print(c)

Note: If you have a special data format, you can write your own reader in a few lines, see here about how to write
your own cache reader.

1.5 Get Profiler/Do Profiling

Profiler is one component of PyMimircache, which can be used for profiling and plotting, including getting reuse
distance and hit ratio curve plotting.

1.5.1 Profiling with LRU

First, let’s try LRU (least recently used), here is how to get a LRUprofiler:

>>> profiler_LRU = c.profiler('LRU')

• To get reuse distance for each request, simply call the functions below. The returned result is a numpy array:

10 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

>>> reuse_dist = profiler_LRU.get_reuse_distance()
array([-1, -1, -1, ..., -1, -1, -1], dtype=int64)

• To get hit count, hit ratio or miss ratio, we can do the following:

>>> profiler_LRU.get_hit_count()
array([0, 2685, 662, ..., 0, 0, 48974], dtype=int64)

Hit count is a numpy array. The nth element of the array means that among all requests, that many requests will be
able to fit in the cache if we increase cache size from n-1 to n. The last two elements of the array are different from
all others, the second to the last element indicates the number of requests that needs larger cache size (if you didn’t
specify the cache_size parameter, then it is 0). The last element says the number of cold misses, meaning the number
of unique requests.

>>> profiler_LRU.get_hit_ratio()
array([0, 0.02357911, 0.02939265, ..., 0.56992061, 0, 0.43007939])

Hit ratio is a numpy array. The nth element of the array means the hit ratio we can achieve given cache size of
n. Similar to hit count, the last two elements give the ratio of requests that needs larger cache size and the ratio of
requests that are unique.

>>> profiler_LRU.get_miss_ratio()
array([1, 0.97642089, 0.97060735, ..., 0.43007939, 0, 0.43007939])

Miss ratio is a numpy array. The nth element of the array means the miss ratio we will have given cache size of n. The
last two elements of the array are the same as that of the hit ratio array.

Note: for reuse distance, hit count, hit ratio, miss ratio, if you don’t specify a cache_size parameter or specify
cache_size=-1, it will use the largest possible size automatically.

• With the data calculated from profiler, you can do plotting yourself, or any other calculation. But for your
convenience, we have also provided several plotting functions for you to use. For plotting hit ratio curve (HRC):

>>> profiler_LRU.plotHRC()

Fig. 1: Hit ratio curve(HRC) of the trace

• Similarly, we can plot miss ratio curve (MRC):

1.5. Get Profiler/Do Profiling 11

PyMimircache Documentation, Release 0.0.2.103

>>> profiler_LRU.plotMRC()

Fig. 2: Miss ratio curve(MRC) of the trace

Warning: Upon testing, using keyword arguments might cause error in some of 32-bit platform, if you get an
error, please try not using keyword arguments.

1.5.2 Profiling with non-LRU

Apart from LRU, we have also provided a variety of other cache replacement algorithms for you to play with, includ-
ing Optimal, FIFO, LRU-2, LRU-K, MRU, LFU, LFU_Fast, Random, SLRU, S4LRU, clock, LinuxClock, TEAR,
LightLRU adaptive SLRU.

Note: Check here for detailed information about each cache replacement algorithms.

To play with these cache replacement algorithms, you just substitue ‘FIFO’ in the examples below with the cache
replacement algorithm you want, then give a cache_size and bin_size (how fine you want the profiling; the smaller,
the slower). The reason why we need cache_size and bin_size is that for a general cache replacement algorithm, the
profiling is done by sampling at certain points among all cache size, in other words, the nth element in numpy arrays
returned represents the result at cache size of n*bin_size. Some examples are shown below:

• Obtaining a profiler:

>>> profiler_FIFO = c.profiler('FIFO', cache_size=2000, bin_size=100)

Several other parameters and their default values are listed below, use_general_profiler is only used when cache re-
placement algorithm is LRU. The reason why we want to use a general profiler for LRU is that profiling for LRU using
a LRU profiler has time complexity of O(NlogN), while general profiler with sampling has time complexity of O(N).
They will have a large time difference on big data.

12 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

Keyword Argument Default Value Required
cache_size No default value YES
bin_size cache_size//100 No
cache_params None Depend on algorithm
num_of_threads num of cores in the machine No
use_general_profiler False No

• After obtaining the profiler, everything else is the same as above with LRUProfiler, you can obtain hit_count,
hit_ratio, miss_ratio, you can plotHRC,

The only difference is that the returned hit_count array, hit_ratio array, miss_ratio array do not have the last two special
elements as above.

Some examples are shown below: >>> profiler_FIFO.get_hit_count() >>> profiler_FIFO.get_hit_ratio() >>> pro-
filer_FIFO.get_miss_ratio() >>> profiler_FIFO.plotHRC()

Note: Reuse distance related operation is only allowed on LRU, so don’t call get_reuse_distance on non-LRU cache
replacement algorithms.

Note: If you want to test your own cache replacement algorithms, check here.

1.6 Basic Plotting

1.6.1 Basic Plotting

PyMimircache allows you to plot a variety graphs, including basic graphs to help you visualize and understand your
data. Before plotting, let’s talk about the concept of time, there are two types of time concept in PyMimircache.

The first one is called virtual time, which basically is the order in the request sequence, so the first request has virtual
time 1, the second request has virtual time 2, etc.

The other is real time, which is the wall clock time. It is used only when you have specified the field/column of
real_time in the data.

Current supported plot types are listed in the table below

plot type description
cold_miss cold miss count VS time, how many cold misses occur every x seconds (real time and unit is the same

as the unit in trace file) or every x requests (virtual time)
cold_miss_ratiosimilar to cold miss plot, except it shows the ratio of cold miss instead of count of cold miss
re-
quest_num

the number of requests per x seconds (real time and unit is the same as the unit in trace file), virtual
time does not make sense here

popular-
ity

the popularity curve of the obj in the trace, it shows how many objects have how many hits

scan_vis obj sorted by first access time and plot the requests against time, this is used to visualize “scan”
rd_distributionthe reuse distribution 2d plot, it shows how many requests have reuse distance of X

To plot these figures, you can invoke twoDPlot function on cachecow obj:

1.6. Basic Plotting 13

PyMimircache Documentation, Release 0.0.2.103

>>> c.twoDPlot(plot_type, **kwargs)

All optional kwargs all listed in the table below.

arguments supported plot types description
time_mode cold_miss/request_num

cold_miss_ratio
time mode used in plotting, “v” for virtual time, “r” for real time.

time_interval cold_miss/request_num
cold_miss_ratio

the time interval/span of each sample.

logX popularity/rd_distribution boolean, whether we use log scale X-axis
logY popularity/rd_distribution boolean, whether we use log scale Y-axis
cdf popularity/rd_distribution boolean, whether we want to plot CDF
par-
tial_ratio

scan_vis the zoom in ratio, if it is 1, then no zoom in, see below for further
explanation.

figname all plots the name of the figure

Cold miss plot

• Cold miss plot: the count of cold misses in the given interval.

>>> c.twoDPlot('cold_miss', mode="v", time_interval=1000) # the number of cold
→˓misses every 1000 requests

Fig. 3: Cold miss count in virtual time

Request number plot

• Request number plot: the number of requests in the given interval.

>>> c.twoDPlot('request_num', mode="r", time_interval=10000) # the number of
→˓requests every 10000 seconds

14 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

Fig. 4: Request number count in real time

Scan_vis plot

• Scan_vis plot: it renames each obj with sequence 1, 2, 3, . . . N based on first access time, then plot the time of
each request thereafter.

• A pixel (X, Y) in the figure means obj Y is requested at virtual time X, a horizontal line y=Y plots the all the
requests of a single obj Y.

• The default setting will plot two figures, the first figure plots all the requests with sampling, the second figure
takes first partial_ratio (0.1) of all requests and do the same plotting, which can been thought as a zoom in for
the first 10% of the trace.

• This plot is very useful when you are dealing with a block-level trace. We can see the scan very easily even if
the scan is not scanning consecutive blocks.

>>> c.twoDPlot('scan_vis', partial_ratio=0.1) # mapping plot

Fig. 5: Mapping plot

1.6. Basic Plotting 15

PyMimircache Documentation, Release 0.0.2.103

1.6.2 Hit Ratio Curve Plotting

To plot hit ratio curve (HRC), you can either get a profiler and plot like the ones shown in profiling, or you can use
cachecow to directly plot hit ratio curves.

Using cachecow to plot HRC is easy, you just call plotHRC and pass in a list of algorithms you want to plot with:

>>> c.plotHRCs(algorithm_list, cache_params=None, cache_size=-1, bin_size=-1,
auto_size=True, num_of_threads=4, use_general_profiler=False,
save_gradually=False, figname="HRC.png", **kwargs)

A detailed explanation of each arguments can be found in the table below:

argu-
ments

Value
type or
possile
value

description

algo-
rithm_list

a list of
algo-
rithm

All supported algorithms can be found here.

cache_paramsa list of
cache
alg pa-
rameters

It is a list of the same size of algorithm_list, use None if an algorithm does not require param-
eters. If the list is all None, then cache_params is optional.

cache_sizeint The max size of cache, if -1, then cachecow will find the largest one for you automatically.
bin_size int cachecow will profiling at bin_size, bin_size*2 . . . cache_size, if bin_size=-1, cachecow will

use cache_size//100 as default.
auto_sizeTrue/False Whether cachecow should chnage cache_size to avoid plateau at the end of HRC curve.
num_of_threadsint Control concurrency in the application, default is 4.
use_general_profilerTrue/False Only Used for LRU profiling, the default profiler is LRUProfiler, which gives high accu-

racy, but has time complexity of O(NlogN), which can be time consuming on big data, if
use_general_profiler=True, then cachecow will use a generalProfiler for LRU as well, which
has time complexity of O(N).

save_graduallyTrue/False On big data, the hit ratio curve plotting can be very time consuming, save_gradually will save
the plot every time when one algorithm is finished.

fig-
name

string The name of the figure, filename should contain suffix

Example

>>> c.plotHRCs(["LRU", "LFUFast", "ARC", "SLRU", "Optimal"],
cache_params=[None, None, None, {"N":2}, None],
save_gradually=True)

1.7 Heatmap Plotting

1.7.1 Plotting Heatmaps

Another great feature of PyMimircache is that it allows you to incorporate time component into consideration, taking
cache analysis from static to dynamic. Currently six types of heatmaps are supported.

16 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

Fig. 6: Hit Ratio Curves

Plot Types

For all the plot types, the X-axis is the time in percent (either real or virtual).

plot type Y-axis plot detail
hit_ratio_start_time_end_timeend time (real or

virtual) in percent
pixel (x, y) means the hit ratio from time x to time y.

rd_distribution reuse distance reuse distance distribution graph, pixel (x, y) represents at time
x+time_interval, the number of requests have reuse distance of y (shown
in color).

rd_distribution_CDFreuse distance similar to reuse distance distribution graph, but each points (x, y) repre-
sents the percent of requests have reuse distance less than or equal to y.

fu-
ture_rd_distribution

future reuse dis-
tance

future reuse distance distribution graph, future reuse distance is defined as
how far in the future, it will be accessed again.

hit_ratio_start_time_cache_sizecache size each vertical line x=t is a hit ratio curve of trace starting at t
avg_rd_start_time_end_timeend time (real or

virtual) in percent
pixel (x, y) means average reuse distance of requests from time x to time y

How to Plot

Plotting heatmaps is easy, just call the following function on cachecow,

>>> c.heatmap(time_mode, plot_type, time_interval=-1, num_of_pixels=-1,
algorithm="LRU", cache_params=None, cache_size=-1, **kwargs)

The first two parameters are mode and plot_type, time mode is either r or v for real time or virtual time, the types of
plot(see table above) The following keyword arguments are optional, however, you must provide one of time_interval
and number_of_pixels, which controls how fine the graph will look and also determines the amount of computation.
The time_interval variable implies the time span of a single pixel in the plot, sometimes it is not easy to estimate
time_interval, so instead you can provide the number of pixels you want in one dimension.

Note: If you do not want the computation time to be very long, then specify a big time_interval or small
num_of_pixels.

1.7. Heatmap Plotting 17

PyMimircache Documentation, Release 0.0.2.103

Keyword
Arguments

Default
Value

Possible Values Necessary

time_interval “-1” a time interval provide this value or num_of_pixels
num_of_pixels “-1” the number of pixels on one di-

mension
provide this value or time_interval

algorithm “LRU” All available cache replacement
algorithms

No

cache_params None Depends on cache replacement
algorithms

Depends on cache replacement algorithms, for
example LRU_K

cache_size -1 Positive integer Necessary for plot
“hit_ratio_start_time_end_time”

figname heatmap.png Any string, remember to in-
clude suffix

No

num_of_threads 4 Positive integer except 0 No

Attention: cache_size is necessary for hit_ratio_start_time_end_time graph.

Plotting Examples

>>> c.heatmap('r', "hit_ratio_start_time_end_time", num_of_pixels=200, cache_
→˓size=2000, figname="heatmap1.png", num_of_threads=8)

Fig. 7: Hit ratio of varying start time and end time

Another example

>>> c.heatmap('r', "rd_distribution", time_interval=10000000)

1.7.2 Plotting Differential Heatmaps

Want to know which algorithm is better? Not satisfied with hit ratio curve or miss ratio curve because they only show
you the result over the whole trace? You are in the right place! Differential heatmaps allow you to compare cache
replacement algorithms with respect to time.

18 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

Fig. 8: Reuse distance distribution graph

Currently we only support differential heatmap of hit_ratio_start_time_end_time. Each pixel (x, y) in the plot repre-
sents the hit ratio difference between algorithm1 and algorithm2 divided by hit ratio of algorithm 1 from time x to y.
The function to plot is shown below:

>>> c.diff_heatmap(time_mode, plot_type, algorithm1, time_interval=-1, num_of_pixels=-
→˓1,

algorithm2="Optimal", cache_params1=None, cache_params2=None,
→˓cache_size=-1, **kwargs)

The arguments here are similar to plotting heatmaps, the only difference is that we have one more algorithm, which is
used for comparison,

Example:

>>> c.diff_heatmap('r', "hit_ratio_start_time_end_time", time_interval=1000000,
→˓algorithm1="LRU", cache_size=2000)

Fig. 9: Differential heatmap, the value of each pixel is (hit_ratio_of_algorithm2 -
hit_ratio_of_algorithm1)/hit_ratio_of_algorithm1

Congratulations! You have finished the basic tutorial! Check Advanced Usage Part if you need.

1.7. Heatmap Plotting 19

PyMimircache Documentation, Release 0.0.2.103

1.8 Advanced Usages

1.8.1 PyMimircache and its components

Current version of PyMimircache is composed of three main components.

The first one is cache, which simulates corresponding cache replacement algorithm.

the second one is cacheReader, which provides all the necessary functions for reading and examing trace data file.

Most important of all, the third component is profilers, which extract data for profiling.

Currently, we have three kinds of profilers, the first one is LRU profiler, specially tailored for LRU; the second one is
a general profiler for profiling all non-LRU cache replacement algorithms; the third profiler is a heatmap plot engine,
which currently supports a variety of heatmaps. LRUProfiler is in C, so it is pretty fast. The other two profilers have
corresponding C implementation (cGeneralProfiler and cHeatmap) used for caches available in C.

Each component has more functionality than described in tutorial, read the source code or raise a new issue in github
if you want to know more or have questions.

1.8.2 Write your own cacheReader

Writing your own cacheReader is not difficult, just inherit abstractCacheReader.py. Here is an example:

from PyMimircache.cacheReader.abstractReader import AbstractReader

class PlainReader(AbstractReader):
"""
PlainReader class

"""
all = ["read_one_req", "copy", "get_params"]

def __init__(self, file_loc, data_type='c', open_c_reader=True, **kwargs):
"""
:param file_loc: location of the file
:param data_type: type of data, can be "l" for int/long, "c" for

→˓string
:param open_c_reader: bool for whether open reader in C backend
:param kwargs: not used now
"""

super(PlainReader, self).__init__(file_loc, data_type, open_c_reader=open_c_
→˓reader, lock=kwargs.get("lock"))

self.trace_file = open(file_loc, 'rb')
if ALLOW_C_MIMIRCACHE and open_c_reader:

self.c_reader = c_cacheReader.setup_reader(file_loc, 'p', data_type=data_
→˓type, block_unit_size=0)

def read_one_req(self):
"""
read one request
:return: a request
"""
super().read_one_req()

line = self.trace_file.readline().decode()

(continues on next page)

20 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

(continued from previous page)

while line and len(line.strip()) == 0:
line = self.trace_file.readline().decode()

if line and len(line.strip()):
return line.strip()

else:
return None

def read_complete_req(self):
"""
read all information about one record, which is the same as read_one_req for

→˓PlainReader
"""

return self.read_one_req()

def skip_n_req(self, n):
"""
skip N requests from current position

:param n: the number of requests to skip
"""

for i in range(n):
self.read_one_req()

def copy(self, open_c_reader=False):
"""
reader a deep copy of current reader with everything reset to initial state,
the returned reader should not interfere with current reader

:param open_c_reader: whether open_c_reader_or_not, default not open
:return: a copied reader
"""

return PlainReader(self.file_loc, data_type=self.data_type, open_c_
→˓reader=open_c_reader, lock=self.lock)

def get_params(self):
"""
return all the parameters for this reader instance in a dictionary
:return: a dictionary containing all parameters
"""

return {
"file_loc": self.file_loc,
"data_type": self.data_type,
"open_c_reader": self.open_c_reader

}

def __next__(self): # Python 3
super().__next__()
element = self.trace_file.readline().strip()
if element:

return element
else:

(continues on next page)

1.8. Advanced Usages 21

PyMimircache Documentation, Release 0.0.2.103

(continued from previous page)

raise StopIteration

def __repr__(self):
return "PlainReader of trace {}".format(self.file_loc)

After writing your own cache reader, you can use it on generalProfiler and heatmap, for example:

>>> reader = vscsiCacheReader(PATH/TO/DATA)
>>> p = generalProfiler(reader, "FIFO", cache_size, bin_size=bin_size, num_of_
→˓process=8)

the first parameter is the cacheReader object of your own, the second is the cache replacement algorithm, the third
parameter is cache size, the fourth parameter is bin_size, and it can be omitted, in which case, the default bin_size if
cache_size/100.

>>> hm = heatmap()
>>> hm.heatmap(reader, 'r', TIME_INTERVAL, "hit_rate_start_time_end_time", cache_
→˓size=CACHE_SIZE)

1.8.3 Write your own cache replacement algorithm

Writing your own cache in Python is not difficult, just inherit Cache.py:

from PyMimircache.cache.abstractCache import Cache

class LRU(Cache):
"""
LRU class for simulating a LRU cache

"""

def __init__(self, cache_size, **kwargs):

super().__init__(cache_size, **kwargs)
self.cacheline_dict = OrderedDict()

def has(self, req_id, **kwargs):
"""
check whether the given id in the cache or not

:return: whether the given element is in the cache
"""
if req_id in self.cacheline_dict:

return True
else:

return False

def _update(self, req_item, **kwargs):
""" the given element is in the cache,
now update cache metadata and its content

:param **kwargs:
:param req_item:
:return: None
"""

(continues on next page)

22 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

(continued from previous page)

req_id = req_item
if isinstance(req_item, Req):

req_id = req_item.item_id

self.cacheline_dict.move_to_end(req_id)

def _insert(self, req_item, **kwargs):
"""
the given element is not in the cache, now insert it into cache
:param **kwargs:
:param req_item:
:return: evicted element or None
"""

req_id = req_item
if isinstance(req_item, Req):

req_id = req_item.item_id

self.cacheline_dict[req_id] = True

def evict(self, **kwargs):
"""
evict one cacheline from the cache

:param **kwargs:
:return: id of evicted cacheline
"""

req_id = self.cacheline_dict.popitem(last=False)
return req_id

def access(self, req_item, **kwargs):
"""
request access cache, it updates cache metadata,
it is the underlying method for both get and put

:param **kwargs:
:param req_item: the request from the trace, it can be in the cache, or not
:return: None
"""

req_id = req_item
if isinstance(req_item, Req):

req_id = req_item.item_id

if self.has(req_id):
self._update(req_item)
return True

else:
self._insert(req_item)
if len(self.cacheline_dict) > self.cache_size:

self.evict()
return False

def __len__(self):
return len(self.cacheline_dict)

(continues on next page)

1.8. Advanced Usages 23

PyMimircache Documentation, Release 0.0.2.103

(continued from previous page)

def __repr__(self):
return "LRU cache of size: {}, current size: {}, {}".\

format(self.cache_size, len(self.cacheline_dict), super().__repr__())

The usage of new cache replacement algorithm is the same as the one in last section, just replace the algorithm string
with your algorithm class.

Profiling in python is only applicable on small data set, so you can use it to verify your idea, when running on large
dataset, we suggested implemented the algorithms in C, check the source code to find out how to implement in C.

1.9 API

The architecture of mimircache is shown in the diagram below, it contains three parts, profiler, cache and cacheReader,
which provides the detailed functions. cachecow is an upper level API that provides most common basic operations.
To perform detailed operations, you will need to deal with the three components, so check the API below.

1.9.1 API-cachecow

class PyMimircache.top.cachecow.Cachecow(**kwargs)
cachecow class providing top level API

open(file_path, trace_type=’p’, data_type=’c’, **kwargs)
The default operation of this function opens a plain text trace, the format of a plain text trace is such a file
that each line contains a label.

By changing trace type, it can be used for opening other types of trace, supported trace type includes

24 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

trace_type file type require init_params
“p” plain text No
“c” csv Yes
“b” binary Yes
“v” vscsi No

the effect of this is the save as calling corresponding functions (csv, binary, vscsi)

Parameters

• file_path – the path to the data

• trace_type – type of trace, “p” for plainText, “c” for csv, “v” for vscsi, “b” for binary

• data_type – the type of request label, can be either “c” for string or “l” for number (for
example block IO LBA)

• kwargs – parameters for opening the trace

Returns reader object

csv(file_path, init_params, data_type=’c’, block_unit_size=0, disk_sector_size=0, **kwargs)
open a csv trace, init_params is a dictionary specifying the specs of the csv file, the possible keys are listed
in the table below. The column/field number begins from 1, so the first column(field) is 1, the second is 2,
etc.

Parameters

• file_path – the path to the data

• init_params – params related to csv file, see above or csvReader for details

• data_type – the type of request label, can be either “c” for string or “l” for number (for
example block IO LBA)

• block_unit_size – the block size for a cache, currently storage system only

• disk_sector_size – the disk sector size of input file, storage system only

Returns reader object

Keyword Argu-
ment

file type Value
Type

Default
Value

Description

label csv/
binary

int this is
required

the column of the label of the request

fmt binary string this is
required

fmt string of binary data, same as
python struct

header csv True/False False whether csv data has header
delimiter csv char “,” the delimiter separating fields in the csv

file
real_time csv/

binary
int NA the column of real time

op csv/
binary

int NA the column of operation (read/write)

size csv/
binary

int NA the column of block/request size

binary(file_path, init_params, data_type=’l’, block_unit_size=0, disk_sector_size=0, **kwargs)
open a binary trace file, init_params see function csv

1.9. API 25

PyMimircache Documentation, Release 0.0.2.103

Parameters

• file_path – the path to the data

• init_params – params related to the spec of data, see above csv for details

• data_type – the type of request label, can be either “c” for string or “l” for number (for
example block IO LBA)

• block_unit_size – the block size for a cache, currently storage system only

• disk_sector_size – the disk sector size of input file, storage system only

Returns reader object

vscsi(file_path, block_unit_size=0, **kwargs)
open vscsi trace file

Parameters

• file_path – the path to the data

• block_unit_size – the block size for a cache, currently storage system only

Returns reader object

reset()

reset cachecow to initial state, including reset reader to the beginning of the trace

close()
close the reader opened in cachecow, and clean up in the future

stat(time_period=[-1, 0])
obtain the statistical information about the trace, including

• number of requests

• number of uniq items

• cold miss ratio

• a list of top 10 popular in form of (obj, num of requests):

• number of obj/block accessed only once

• frequency mean

• time span

Returns a string of the information above

get_frequency_access_list(time_period=[-1, 0])
obtain the statistical information about the trace, including

• number of requests

• number of uniq items

• cold miss ratio

• a list of top 10 popular in form of (obj, num of requests):

• number of obj/block accessed only once

• frequency mean

• time span

26 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

Returns a string of the information above

num_of_req()

Returns the number of requests in the trace

num_of_uniq_req()

Returns the number of unique requests in the trace

get_reuse_distance()

Returns an array of reuse distance

get_hit_count_dict(algorithm, cache_size=-1, cache_params=None, bin_size=-1,
use_general_profiler=False, **kwargs)

get hit count of the given algorithm and return a dict of mapping from cache size -> hit count notice that
hit count array is not CDF, meaning hit count of size 2 does not include hit count of size 1, you need to
sum up to get a CDF.

Parameters

• algorithm – cache replacement algorithms

• cache_size – size of cache

• cache_params – parameters passed to cache, some of the cache replacement algorithms
require parameters, for example LRU-K, SLRU

• bin_size – if algorithm is not LRU, then the hit ratio will be calculated by simulating
cache at cache size [0, bin_size, bin_size*2 . . . cache_size], this is not required for LRU

• use_general_profiler – if algorithm is LRU and you don’t want to use LRUPro-
filer, then set this to True, possible reason for not using a LRUProfiler: 1. LRUProfiler is
too slow for your large trace because the algorithm is O(NlogN) and it uses single thread;
2. LRUProfiler has a bug (let me know if you found a bug).

• kwargs – other parameters including num_of_threads

Returns an dict of hit ratio of given algorithms, mapping from cache_size -> hit ratio

get_hit_ratio_dict(algorithm, cache_size=-1, cache_params=None, bin_size=-1,
use_general_profiler=False, **kwargs)

get hit ratio of the given algorithm and return a dict of mapping from cache size -> hit ratio

Parameters

• algorithm – cache replacement algorithms

• cache_size – size of cache

• cache_params – parameters passed to cache, some of the cache replacement algorithms
require parameters, for example LRU-K, SLRU

• bin_size – if algorithm is not LRU, then the hit ratio will be calculated by simulating
cache at cache size [0, bin_size, bin_size*2 . . . cache_size], this is not required for LRU

• use_general_profiler – if algorithm is LRU and you don’t want to use LRUPro-
filer, then set this to True, possible reason for not using a LRUProfiler: 1. LRUProfiler is
too slow for your large trace because the algorithm is O(NlogN) and it uses single thread;
2. LRUProfiler has a bug (let me know if you found a bug).

• kwargs – other parameters including num_of_threads

Returns an dict of hit ratio of given algorithms, mapping from cache_size -> hit ratio

1.9. API 27

PyMimircache Documentation, Release 0.0.2.103

profiler(algorithm, cache_params=None, cache_size=-1, bin_size=-1, use_general_profiler=False,
**kwargs)

get a profiler instance, this should not be used by most users

Parameters

• algorithm – name of algorithm

• cache_params – parameters of given cache replacement algorithm

• cache_size – size of cache

• bin_size – bin_size for generalProfiler

• use_general_profiler – this option is for LRU only, if it is True, then return a
cGeneralProfiler for LRU, otherwise, return a LRUProfiler for LRU.

Note: LRUProfiler does not require cache_size/bin_size params, it does not sample thus
provides a smooth curve, however, it is O(logN) at each step, in constrast, cGeneralProfiler
samples the curve, but use O(1) at each step

• kwargs – num_of_threads

Returns a profiler instance

heatmap(time_mode, plot_type, time_interval=-1, num_of_pixels=-1, algorithm=’LRU’,
cache_params=None, cache_size=-1, **kwargs)

plot heatmaps, currently supports the following heatmaps

• hit_ratio_start_time_end_time

• hit_ratio_start_time_cache_size (python only)

• avg_rd_start_time_end_time (python only)

• cold_miss_count_start_time_end_time (python only)

• rd_distribution

• rd_distribution_CDF

• future_rd_distribution

• dist_distribution

• reuse_time_distribution

Parameters

• time_mode – the type of time, can be “v” for virtual time, or “r” for real time

• plot_type – the name of plot types, see above for plot types

• time_interval – the time interval of one pixel

• num_of_pixels – if you don’t to use time_interval, you can also specify how many
pixels you want in one dimension, note this feature is not well tested

• algorithm – what algorithm to use for plotting heatmap, this is not required for distance
related heatmap like rd_distribution

• cache_params – parameters passed to cache, some of the cache replacement algorithms
require parameters, for example LRU-K, SLRU

• cache_size – The size of cache, this is required only for hit_ratio_start_time_end_time

• kwargs – other parameters for computation and plotting such as num_of_threads, fig-
name

28 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

diff_heatmap(time_mode, plot_type, algorithm1=’LRU’, time_interval=-1, num_of_pixels=-1, al-
gorithm2=’Optimal’, cache_params1=None, cache_params2=None, cache_size=-1,
**kwargs)

Plot the differential heatmap between two algorithms by alg2 - alg1

Parameters

• cache_size – size of cache

• time_mode – time time_mode “v” for virutal time, “r” for real time

• plot_type – same as the name in heatmap function

• algorithm1 – name of the first alg

• time_interval – same as in heatmap

• num_of_pixels – same as in heatmap

• algorithm2 – name of the second algorithm

• cache_params1 – parameters of the first algorithm

• cache_params2 – parameters of the second algorithm

• kwargs – include num_of_threads

twoDPlot(plot_type, **kwargs)
an aggregate function for all two dimenional plots printing except hit ratio curve

plot type required parameters Description
cold_miss_count time_mode,

time_interval
cold miss count VS time

cold_miss_ratio time_mode,
time_interval

cold miss ratio VS time

request_rate time_mode,
time_interval

num of requests VS time

popularity NA Percentage of obj VS frequency
rd_distribution NA Num of req VS reuse distance
rt_distribution NA Num of req VS reuse time
scan_vis_2d NA mapping from original objID to sequential number
interval_hit_ratio cache_size hit ratio of interval VS time
request_traffic_vol
obj_size_distribution

Parameters

• plot_type – type of the plot, see above

• kwargs – paramters related to plots, see twoDPlots module for detailed control over plots

plotHRCs(algorithm_list, cache_params=(), cache_size=-1, bin_size=-1, auto_resize=True, fig-
name=’HRC.png’, **kwargs)

this function provides hit ratio curve plotting

Parameters

• algorithm_list – a list of algorithm(s)

• cache_params – the corresponding cache params for the algorithms, use None for al-
gorithms that don’t require cache params, if none of the alg requires cache params, you
don’t need to set this

1.9. API 29

PyMimircache Documentation, Release 0.0.2.103

• cache_size – maximal size of cache, use -1 for max possible size

• bin_size – bin size for non-LRU profiling

• auto_resize – when using max possible size or specified cache size too large, you will
get a huge plateau at the end of hit ratio curve, set auto_resize to True to cutoff most of the
big plateau

• figname – name of figure

• kwargs – options: block_unit_size, num_of_threads, auto_resize_threshold, xlimit,
ylimit, cache_unit_size

save_gradually - save a figure everytime computation for one algorithm finishes,

label - instead of using algorithm list as label, specify user-defined label

plotMRCs(algorithm_list, cache_params=(), cache_size=-1, bin_size=-1, figname=’MRC.png’,
**kwargs)

this function provides miss ratio curve plotting

Parameters

• algorithm_list – a list of algorithm(s)

• cache_params – the corresponding cache params for the algorithms, use None for al-
gorithms that don’t require cache params, if none of the alg requires cache params, you
don’t need to set this

• cache_size – maximal size of cache, use -1 for max possible size

• bin_size – bin size for non-LRU profiling

• auto_resize – when using max possible size or specified cache size too large, you will
get a huge plateau at the end of hit ratio curve, set auto_resize to True to cutoff most of the
big plateau

• figname – name of figure

• kwargs – options: block_unit_size, num_of_threads, auto_resize_threshold, xlimit,
ylimit, cache_unit_size

save_gradually - save a figure everytime computation for one algorithm finishes,

label - instead of using algorithm list as label, specify user-defined label

characterize(characterize_type, cache_size=-1, **kwargs)
use this function to obtain a series of plots about your trace, the type includes

• short - short run time, fewer plots with less accuracy

• medium

• long

• all - most of the available plots with high accuracy, notice it can take LONG time on big trace

Parameters

• characterize_type – see above, options: short, medium, long, all

• cache_size – estimated cache size for the trace, if -1, PyMimircache will estimate the
cache size

• kwargs – print_stat

Returns trace stat string

30 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

class PyMimircache.top.cachecow.Cachecow(**kwargs)
cachecow class providing top level API

open(file_path, trace_type=’p’, data_type=’c’, **kwargs)
The default operation of this function opens a plain text trace, the format of a plain text trace is such a file
that each line contains a label.

By changing trace type, it can be used for opening other types of trace, supported trace type includes

trace_type file type require init_params
“p” plain text No
“c” csv Yes
“b” binary Yes
“v” vscsi No

the effect of this is the save as calling corresponding functions (csv, binary, vscsi)

Parameters

• file_path – the path to the data

• trace_type – type of trace, “p” for plainText, “c” for csv, “v” for vscsi, “b” for binary

• data_type – the type of request label, can be either “c” for string or “l” for number (for
example block IO LBA)

• kwargs – parameters for opening the trace

Returns reader object

csv(file_path, init_params, data_type=’c’, block_unit_size=0, disk_sector_size=0, **kwargs)
open a csv trace, init_params is a dictionary specifying the specs of the csv file, the possible keys are listed
in the table below. The column/field number begins from 1, so the first column(field) is 1, the second is 2,
etc.

Parameters

• file_path – the path to the data

• init_params – params related to csv file, see above or csvReader for details

• data_type – the type of request label, can be either “c” for string or “l” for number (for
example block IO LBA)

• block_unit_size – the block size for a cache, currently storage system only

• disk_sector_size – the disk sector size of input file, storage system only

Returns reader object

1.9. API 31

PyMimircache Documentation, Release 0.0.2.103

Keyword Argu-
ment

file type Value
Type

Default
Value

Description

label csv/
binary

int this is
required

the column of the label of the request

fmt binary string this is
required

fmt string of binary data, same as
python struct

header csv True/False False whether csv data has header
delimiter csv char “,” the delimiter separating fields in the csv

file
real_time csv/

binary
int NA the column of real time

op csv/
binary

int NA the column of operation (read/write)

size csv/
binary

int NA the column of block/request size

binary(file_path, init_params, data_type=’l’, block_unit_size=0, disk_sector_size=0, **kwargs)
open a binary trace file, init_params see function csv

Parameters

• file_path – the path to the data

• init_params – params related to the spec of data, see above csv for details

• data_type – the type of request label, can be either “c” for string or “l” for number (for
example block IO LBA)

• block_unit_size – the block size for a cache, currently storage system only

• disk_sector_size – the disk sector size of input file, storage system only

Returns reader object

vscsi(file_path, block_unit_size=0, **kwargs)
open vscsi trace file

Parameters

• file_path – the path to the data

• block_unit_size – the block size for a cache, currently storage system only

Returns reader object

reset()

reset cachecow to initial state, including reset reader to the beginning of the trace

close()
close the reader opened in cachecow, and clean up in the future

stat(time_period=[-1, 0])
obtain the statistical information about the trace, including

• number of requests

• number of uniq items

• cold miss ratio

• a list of top 10 popular in form of (obj, num of requests):

32 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

• number of obj/block accessed only once

• frequency mean

• time span

Returns a string of the information above

get_frequency_access_list(time_period=[-1, 0])
obtain the statistical information about the trace, including

• number of requests

• number of uniq items

• cold miss ratio

• a list of top 10 popular in form of (obj, num of requests):

• number of obj/block accessed only once

• frequency mean

• time span

Returns a string of the information above

num_of_req()

Returns the number of requests in the trace

num_of_uniq_req()

Returns the number of unique requests in the trace

get_reuse_distance()

Returns an array of reuse distance

get_hit_count_dict(algorithm, cache_size=-1, cache_params=None, bin_size=-1,
use_general_profiler=False, **kwargs)

get hit count of the given algorithm and return a dict of mapping from cache size -> hit count notice that
hit count array is not CDF, meaning hit count of size 2 does not include hit count of size 1, you need to
sum up to get a CDF.

Parameters

• algorithm – cache replacement algorithms

• cache_size – size of cache

• cache_params – parameters passed to cache, some of the cache replacement algorithms
require parameters, for example LRU-K, SLRU

• bin_size – if algorithm is not LRU, then the hit ratio will be calculated by simulating
cache at cache size [0, bin_size, bin_size*2 . . . cache_size], this is not required for LRU

• use_general_profiler – if algorithm is LRU and you don’t want to use LRUPro-
filer, then set this to True, possible reason for not using a LRUProfiler: 1. LRUProfiler is
too slow for your large trace because the algorithm is O(NlogN) and it uses single thread;
2. LRUProfiler has a bug (let me know if you found a bug).

• kwargs – other parameters including num_of_threads

Returns an dict of hit ratio of given algorithms, mapping from cache_size -> hit ratio

1.9. API 33

PyMimircache Documentation, Release 0.0.2.103

get_hit_ratio_dict(algorithm, cache_size=-1, cache_params=None, bin_size=-1,
use_general_profiler=False, **kwargs)

get hit ratio of the given algorithm and return a dict of mapping from cache size -> hit ratio

Parameters

• algorithm – cache replacement algorithms

• cache_size – size of cache

• cache_params – parameters passed to cache, some of the cache replacement algorithms
require parameters, for example LRU-K, SLRU

• bin_size – if algorithm is not LRU, then the hit ratio will be calculated by simulating
cache at cache size [0, bin_size, bin_size*2 . . . cache_size], this is not required for LRU

• use_general_profiler – if algorithm is LRU and you don’t want to use LRUPro-
filer, then set this to True, possible reason for not using a LRUProfiler: 1. LRUProfiler is
too slow for your large trace because the algorithm is O(NlogN) and it uses single thread;
2. LRUProfiler has a bug (let me know if you found a bug).

• kwargs – other parameters including num_of_threads

Returns an dict of hit ratio of given algorithms, mapping from cache_size -> hit ratio

profiler(algorithm, cache_params=None, cache_size=-1, bin_size=-1, use_general_profiler=False,
**kwargs)

get a profiler instance, this should not be used by most users

Parameters

• algorithm – name of algorithm

• cache_params – parameters of given cache replacement algorithm

• cache_size – size of cache

• bin_size – bin_size for generalProfiler

• use_general_profiler – this option is for LRU only, if it is True, then return a
cGeneralProfiler for LRU, otherwise, return a LRUProfiler for LRU.

Note: LRUProfiler does not require cache_size/bin_size params, it does not sample thus
provides a smooth curve, however, it is O(logN) at each step, in constrast, cGeneralProfiler
samples the curve, but use O(1) at each step

• kwargs – num_of_threads

Returns a profiler instance

heatmap(time_mode, plot_type, time_interval=-1, num_of_pixels=-1, algorithm=’LRU’,
cache_params=None, cache_size=-1, **kwargs)

plot heatmaps, currently supports the following heatmaps

• hit_ratio_start_time_end_time

• hit_ratio_start_time_cache_size (python only)

• avg_rd_start_time_end_time (python only)

• cold_miss_count_start_time_end_time (python only)

• rd_distribution

• rd_distribution_CDF

• future_rd_distribution

34 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

• dist_distribution

• reuse_time_distribution

Parameters

• time_mode – the type of time, can be “v” for virtual time, or “r” for real time

• plot_type – the name of plot types, see above for plot types

• time_interval – the time interval of one pixel

• num_of_pixels – if you don’t to use time_interval, you can also specify how many
pixels you want in one dimension, note this feature is not well tested

• algorithm – what algorithm to use for plotting heatmap, this is not required for distance
related heatmap like rd_distribution

• cache_params – parameters passed to cache, some of the cache replacement algorithms
require parameters, for example LRU-K, SLRU

• cache_size – The size of cache, this is required only for hit_ratio_start_time_end_time

• kwargs – other parameters for computation and plotting such as num_of_threads, fig-
name

diff_heatmap(time_mode, plot_type, algorithm1=’LRU’, time_interval=-1, num_of_pixels=-1, al-
gorithm2=’Optimal’, cache_params1=None, cache_params2=None, cache_size=-1,
**kwargs)

Plot the differential heatmap between two algorithms by alg2 - alg1

Parameters

• cache_size – size of cache

• time_mode – time time_mode “v” for virutal time, “r” for real time

• plot_type – same as the name in heatmap function

• algorithm1 – name of the first alg

• time_interval – same as in heatmap

• num_of_pixels – same as in heatmap

• algorithm2 – name of the second algorithm

• cache_params1 – parameters of the first algorithm

• cache_params2 – parameters of the second algorithm

• kwargs – include num_of_threads

twoDPlot(plot_type, **kwargs)
an aggregate function for all two dimenional plots printing except hit ratio curve

1.9. API 35

PyMimircache Documentation, Release 0.0.2.103

plot type required parameters Description
cold_miss_count time_mode,

time_interval
cold miss count VS time

cold_miss_ratio time_mode,
time_interval

cold miss ratio VS time

request_rate time_mode,
time_interval

num of requests VS time

popularity NA Percentage of obj VS frequency
rd_distribution NA Num of req VS reuse distance
rt_distribution NA Num of req VS reuse time
scan_vis_2d NA mapping from original objID to sequential number
interval_hit_ratio cache_size hit ratio of interval VS time
request_traffic_vol
obj_size_distribution

Parameters

• plot_type – type of the plot, see above

• kwargs – paramters related to plots, see twoDPlots module for detailed control over plots

plotHRCs(algorithm_list, cache_params=(), cache_size=-1, bin_size=-1, auto_resize=True, fig-
name=’HRC.png’, **kwargs)

this function provides hit ratio curve plotting

Parameters

• algorithm_list – a list of algorithm(s)

• cache_params – the corresponding cache params for the algorithms, use None for al-
gorithms that don’t require cache params, if none of the alg requires cache params, you
don’t need to set this

• cache_size – maximal size of cache, use -1 for max possible size

• bin_size – bin size for non-LRU profiling

• auto_resize – when using max possible size or specified cache size too large, you will
get a huge plateau at the end of hit ratio curve, set auto_resize to True to cutoff most of the
big plateau

• figname – name of figure

• kwargs – options: block_unit_size, num_of_threads, auto_resize_threshold, xlimit,
ylimit, cache_unit_size

save_gradually - save a figure everytime computation for one algorithm finishes,

label - instead of using algorithm list as label, specify user-defined label

plotMRCs(algorithm_list, cache_params=(), cache_size=-1, bin_size=-1, figname=’MRC.png’,
**kwargs)

this function provides miss ratio curve plotting

Parameters

• algorithm_list – a list of algorithm(s)

• cache_params – the corresponding cache params for the algorithms, use None for al-
gorithms that don’t require cache params, if none of the alg requires cache params, you
don’t need to set this

36 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

• cache_size – maximal size of cache, use -1 for max possible size

• bin_size – bin size for non-LRU profiling

• auto_resize – when using max possible size or specified cache size too large, you will
get a huge plateau at the end of hit ratio curve, set auto_resize to True to cutoff most of the
big plateau

• figname – name of figure

• kwargs – options: block_unit_size, num_of_threads, auto_resize_threshold, xlimit,
ylimit, cache_unit_size

save_gradually - save a figure everytime computation for one algorithm finishes,

label - instead of using algorithm list as label, specify user-defined label

characterize(characterize_type, cache_size=-1, **kwargs)
use this function to obtain a series of plots about your trace, the type includes

• short - short run time, fewer plots with less accuracy

• medium

• long

• all - most of the available plots with high accuracy, notice it can take LONG time on big trace

Parameters

• characterize_type – see above, options: short, medium, long, all

• cache_size – estimated cache size for the trace, if -1, PyMimircache will estimate the
cache size

• kwargs – print_stat

Returns trace stat string

1.9.2 API-profiler

1.9.3 API-cLRUProfiler

1.9.4 API-profiler

1.9.5 API-cHeatmap

class PyMimircache.profiler.cHeatmap.CHeatmap(**kwargs)
heatmap class for plotting heatmaps in C

static get_breakpoints(reader, time_mode, time_interval=-1, num_of_pixel_of_time_dim=-1,
**kwargs)

retrieve the breakpoints given time_mode and time_interval or num_of_pixel_of_time_dim, break point
breaks the trace into chunks of given time_interval

Parameters

• reader – reader for reading trace

• time_mode – either real time (r) or virtual time (v)

• time_interval – the intended time_interval of data chunk

1.9. API 37

PyMimircache Documentation, Release 0.0.2.103

• num_of_pixel_of_time_dim – the number of chunks, this is used when it is hard
to estimate time_interval, you only need specify one, either num_of_pixel_of_time_dim
or time_interval

• kwargs – not used now

Returns a numpy list of break points begin with 0, ends with total_num_requests

heatmap(reader, time_mode, plot_type, algorithm=’LRU’, time_interval=-1,
num_of_pixel_of_time_dim=-1, cache_params=None, **kwargs)

This functions provides different types of heatmap plotting

Parameters

• reader – the reader instance for data input

• time_mode – either real time (r) or virtual time (v), real time is wall clock time, it needs
the reader containing real time info virtual time is the reference number, aka. the number
of requests

• plot_type – different types of heatmap, supported heatmaps are listed in the table be-
low

• algorithm – cache replacement algorithm (default: LRU)

• time_interval – the time interval of each pixel

• num_of_pixel_of_time_dim – if don’t want to specify time_interval, you can also
specify how many pixels you want

• cache_params – params used in cache

• kwargs – include num_of_threads, figname, enable_ihr, ema_coef(default: 0.8),
info_on_fig

Returns

plot_type required param-
eters

descriptions

“hr_st_et” cache_size hit ratio with regarding to start time (x) and end time (y)
“hr_st_size” NOT IMPLE-

MENTED
hit ratio with reagarding to start time (x) and size (y)

“avg_rd_st_et” NOT IMPLE-
MENTED

average reuse distance with regaarding to start time (x) and
end time (y)

“rd_distribution” N/A reuse distance distribution (y) vs time (x)
“rd_distribution_CDF”N/A reuse distance distribution CDF (y) vs time (x)
“fu-
ture_rd_distribution”

N/A future reuse distance distribution (y) vs time (x)

“dist_distribution” N/A absolute distance distribution (y) vs time (x)
“rt_distribution” N/A reuse time distribution (y) vs time (x)

diff_heatmap(reader, time_mode, plot_type, algorithm1, time_interval=-1,
num_of_pixel_of_time_dim=-1, algorithm2=’Optimal’, cache_params1=None,
cache_params2=None, **kwargs)

Parameters

• time_interval –

• num_of_pixel_of_time_dim –

• algorithm2 –

38 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

• cache_params1 –

• cache_params2 –

• algorithm1 –

• plot_type –

• time_mode –

• reader –

• kwargs – include num_of_process, figname

Returns

1.9.6 API-pyHeatmap

1.9.7 API-pyGeneralProfiler

1.9.8 API-twoDPlots

PyMimircache.profiler.twoDPlots.request_rate_2d(reader, time_mode, time_interval, fig-
name=’request_rate.png’, **kwargs)

plot the number of requests per time_interval vs time :param reader: :param time_mode: either ‘r’ or ‘v’ for real
time(wall-clock time) or virtual time(reference time) :param time_interval: :param figname: :return: the list of
data points

PyMimircache.profiler.twoDPlots.request_traffic_vol_2d(reader, time_mode,
time_interval, size_col, fig-
name=’request_traffic_vol.png’,
**kwargs)

plot the the request traffic volume (number of bytes) per time_interval vs time

Parameters

• reader –

• time_mode – either ‘r’ or ‘v’ for real time(wall-clock time) or virtual time(reference time)

• time_interval –

• figname –

Returns the list of data points

PyMimircache.profiler.twoDPlots.cold_miss_count_2d(reader, time_mode,
time_interval, fig-
name=’cold_miss_count2d.png’,
**kwargs)

plot the number of cold miss per time_interval :param reader: :param time_mode: either ‘r’ or ‘v’ for real
time(wall-clock time) or virtual time(reference time) :param time_interval: :param figname: :return: the list of
data points

PyMimircache.profiler.twoDPlots.cold_miss_ratio_2d(reader, time_mode,
time_interval, fig-
name=’cold_miss_ratio2d.png’,
**kwargs)

plot the percent of cold miss per time_interval :param reader: :param time_mode: either ‘r’ or ‘v’ for real
time(wall-clock time) or virtual time(reference time) :param time_interval: :param figname: :return: the list of
data points

1.9. API 39

PyMimircache Documentation, Release 0.0.2.103

PyMimircache.profiler.twoDPlots.scan_vis_2d(reader, partial_ratio=0.1, figname=None,
**kwargs)

rename all the ojbID for items in the trace for visualization of trace so the first obj is renamed to 1, the second
obj is renamed to 2, etc. Notice that it is not first request, second request. . .

Parameters

• reader –

• partial_ratio – take fitst partial_ratio of trace for zooming in

• figname –

Returns

PyMimircache.profiler.twoDPlots.popularity_2d(reader, logX=True, logY=False,
cdf=True, plot_type=’all’, fig-
name=’freq_distribution_2d.png’,
**kwargs)

plot the popularity curve of the obj in the trace X axis is object frequency, Y axis is either obj percentage or
request percentage depending on plot_type

Parameters

• reader –

• logX –

• logY –

• cdf –

• plot_type –

• figname –

Returns the list of data points

PyMimircache.profiler.twoDPlots.rd_freq_popularity_2d(reader, logX=True,
logY=True, cdf=False, fig-
name=’rdFreq_popularity_2d.png’,
**kwargs)

plot the reuse distance distribution in a two dimensional figure, X axis is reuse distance frequency Y axis is the
number of requests in percentage I don’t know why we need this plot

Parameters

• reader –

• logX –

• logY –

• cdf –

• figname –

Returns the list of data points

PyMimircache.profiler.twoDPlots.rd_distribution_2d(reader, logX=True,
logY=False, cdf=True, fig-
name=’rd_popularity_2d.png’,
**kwargs)

plot the reuse distance distribution in two dimension, cold miss is ignored X axis is reuse distance Y axis is
number of requests (not in percentage) :param reader: :param logX: :param logY: :param cdf: :param figname:
:return: the list of data points

40 Chapter 1. The User Guide

PyMimircache Documentation, Release 0.0.2.103

PyMimircache.profiler.twoDPlots.rt_distribution_2d(reader, granular-
ity=10, logX=True,
logY=False, cdf=True, fig-
name=’rt_popularity_2d.png’,
**kwargs)

plot the reuse time distribution in the trace X axis is reuse time, Y axis is number of requests (not in percentage)

Parameters

• reader –

• granularity –

• logX –

• logY –

• cdf –

• figname –

• kwargs – time_bin

Returns the list of data points

PyMimircache.profiler.twoDPlots.obj_size_distribution_2d(reader, logX=True,
logY=False, cdf=True,
plot_type=’all’, fig-
name=’size_distribution_2d.png’,
size_col=-1,
log_base=1.0002,
**kwargs)

plot the popularity curve of the obj in the trace X axis is object frequency, Y axis is either obj percentage or
request percentage depending on plot_type

Parameters

• reader –

• logX –

• logY –

• cdf –

• plot_type –

• figname –

Returns the list of data points

PyMimircache.profiler.twoDPlots.interval_hit_ratio_2d(reader, cache_size,
decay_coef=0.8,
time_mode=’v’,
time_interval=10000, fig-
name=’IHRC_2d.png’,
**kwargs)

The hit ratio curve over time interval, each pixel in the plot represents the exponential weight moving average
(ewma) of hit ratio of the interval

Parameters

• reader –

• cache_size –

1.9. API 41

PyMimircache Documentation, Release 0.0.2.103

• decay_coef – used in ewma

• time_mode –

• time_interval –

• figname –

Returns the list of data points

PyMimircache.profiler.twoDPlots.freq_distribution_2d(reader, logX=True,
logY=False, cdf=True,
plot_type=’all’, fig-
name=’freq_distribution_2d.png’,
**kwargs)

plot the popularity curve of the obj in the trace X axis is object frequency, Y axis is either obj percentage or
request percentage depending on plot_type

Parameters

• reader –

• logX –

• logY –

• cdf –

• plot_type –

• figname –

Returns the list of data points

1.9.9 API-cache

1.9.10 API-cacheReader

42 Chapter 1. The User Guide

CHAPTER 2

Supported Features

• Cache replacement algorithms simulation.

• trace visualization.

• A variety of cache replacement algorithms, including LRU, LFU, MRU, FIFO, Clock, LinuxClock, TEAR,
Random, ARC, SLRU, Optimal and etc.

• Hit/miss ratio curve (HRC/MRC) plotting.

• Efficient reuse distance calculation for LRU.

• Heatmap plotting for visualizing cache dynamics.

• Reuse distance distribution plotting.

• Cache replacement algorithm comparison.

43

PyMimircache Documentation, Release 0.0.2.103

44 Chapter 2. Supported Features

CHAPTER 3

Customization

Now you can customize PyMimircache to fit your own need. You can write

• your own cache reader for reading your special cache trace files.

• your own cache replacement algorithms.

• a middleware for sampling your cache traces for analysis.

45

PyMimircache Documentation, Release 0.0.2.103

46 Chapter 3. Customization

CHAPTER 4

Indices and tables

• search

47

PyMimircache Documentation, Release 0.0.2.103

48 Chapter 4. Indices and tables

Python Module Index

p
PyMimircache.profiler.twoDPlots, 39
PyMimircache.top.cachecow, 24

49

PyMimircache Documentation, Release 0.0.2.103

50 Python Module Index

Index

B
binary() (PyMimircache.top.cachecow.Cachecow

method), 25, 32

C
Cachecow (class in PyMimircache.top.cachecow), 24,

31
characterize() (PyMimir-

cache.top.cachecow.Cachecow method),
30, 37

CHeatmap (class in PyMimircache.profiler.cHeatmap),
37

close() (PyMimircache.top.cachecow.Cachecow
method), 26, 32

cold_miss_count_2d() (in module PyMimir-
cache.profiler.twoDPlots), 39

cold_miss_ratio_2d() (in module PyMimir-
cache.profiler.twoDPlots), 39

csv() (PyMimircache.top.cachecow.Cachecow
method), 25, 31

D
diff_heatmap() (PyMimir-

cache.profiler.cHeatmap.CHeatmap method),
38

diff_heatmap() (PyMimir-
cache.top.cachecow.Cachecow method),
29, 35

F
freq_distribution_2d() (in module PyMimir-

cache.profiler.twoDPlots), 42

G
get_breakpoints() (PyMimir-

cache.profiler.cHeatmap.CHeatmap static
method), 37

get_frequency_access_list() (PyMimir-
cache.top.cachecow.Cachecow method), 26,
33

get_hit_count_dict() (PyMimir-
cache.top.cachecow.Cachecow method),
27, 33

get_hit_ratio_dict() (PyMimir-
cache.top.cachecow.Cachecow method),
27, 33

get_reuse_distance() (PyMimir-
cache.top.cachecow.Cachecow method),
27, 33

H
heatmap() (PyMimir-

cache.profiler.cHeatmap.CHeatmap method),
38

heatmap() (PyMimircache.top.cachecow.Cachecow
method), 28, 34

I
interval_hit_ratio_2d() (in module PyMimir-

cache.profiler.twoDPlots), 41

N
num_of_req() (PyMimir-

cache.top.cachecow.Cachecow method),
27, 33

num_of_uniq_req() (PyMimir-
cache.top.cachecow.Cachecow method),
27, 33

O
obj_size_distribution_2d() (in module

PyMimircache.profiler.twoDPlots), 41
open() (PyMimircache.top.cachecow.Cachecow

method), 24, 31

P
plotHRCs() (PyMimircache.top.cachecow.Cachecow

method), 29, 36
plotMRCs() (PyMimircache.top.cachecow.Cachecow

method), 30, 36

51

PyMimircache Documentation, Release 0.0.2.103

popularity_2d() (in module PyMimir-
cache.profiler.twoDPlots), 40

profiler() (PyMimircache.top.cachecow.Cachecow
method), 27, 34

PyMimircache.profiler.twoDPlots (module),
39

PyMimircache.top.cachecow (module), 24

R
rd_distribution_2d() (in module PyMimir-

cache.profiler.twoDPlots), 40
rd_freq_popularity_2d() (in module PyMimir-

cache.profiler.twoDPlots), 40
request_rate_2d() (in module PyMimir-

cache.profiler.twoDPlots), 39
request_traffic_vol_2d() (in module PyMimir-

cache.profiler.twoDPlots), 39
reset() (PyMimircache.top.cachecow.Cachecow

method), 26, 32
rt_distribution_2d() (in module PyMimir-

cache.profiler.twoDPlots), 40

S
scan_vis_2d() (in module PyMimir-

cache.profiler.twoDPlots), 39
stat() (PyMimircache.top.cachecow.Cachecow

method), 26, 32

T
twoDPlot() (PyMimircache.top.cachecow.Cachecow

method), 29, 35

V
vscsi() (PyMimircache.top.cachecow.Cachecow

method), 26, 32

52 Index

	The User Guide
	Introduction
	Installation
	Quick Start
	Open Different Traces
	Get Profiler/Do Profiling
	Basic Plotting
	Heatmap Plotting
	Advanced Usages
	API

	Supported Features
	Customization
	Indices and tables
	Python Module Index
	Index

